New computer-based search strategies for extreme functions of the Gomory-Johnson infinite group problem

نویسندگان

  • Matthias Köppe
  • Yuan Zhou
چکیده

We describe new computer-based search strategies for extreme functions for the Gomory–Johnson infinite group problem. They lead to the discovery of new extreme functions, whose existence settles several open questions. 1 166 3 166 2 83 5 166 3 83 7 166 9 166 5 83 11 166 6 83 13 166 15 166 8 83 17 166 9 83 19 166 21 166 11 83 23 166 12 83 25 166 29 166 15 83 31 166 16 83 33 166 17 83 35 166 18 83 37 166 19 83 39 166 20 83 41 166 21 83 43 166 22 83 45 166 23 83 47 166 24 83 49 166 25 83 51 166 26 83 53 166 27 83 29 83 59 166 30 83 61 166 31 83 32 83 65 166 33 83 67 166 34 83 35 83 71 166 36 83 73 166 37 83 38 83 77 166 39 83 79 166 40 83 41 83 1 2 42 83 43 83 87 166 44 83 89 166 45 83 46 83 93 166 47 83 95 166 48 83 49 83 99 166 50 83 101 166 51 83 52 83 105 166 53 83 107 166 54 83 56 83 113 166 57 83 115 166 58 83 117 166 59 83 119 166 60 83 121 166 61 83 123 166 62 83 125 166 63 83 127 166 64 83 129 166 65 83 131 166 66 83 133 166 67 83 135 166 68 83 137 166 141 166 71 83 143 166 72 83 145 166 147 166 74 83 149 166 75 83 151 166 153 166 77 83 155 166 78 83 157 166 159 166 80 83 161 166 81 83 163 166 165 166 1 1 166 3 166 2 83 5 166 3 83 7 166 9 166 5 83 11 166 6 83 13 166 15 166 8 83 17 166 9 83 19 166 21 166 11 83 23 166 12 83 25 166 29 166 15 83 31 166 16 83 33 166 17 83 35 166 18 83 37 166 19 83 39 166 20 83 41 166 21 83 43 166 22 83 45 166 23 83 47 166 24 83 49 166 25 83 51 166 26 83 53 166 27 83 29 83 59 166 30 83 61 166 31 83 32 83 65 166 33 83 67 166 34 83 35 83 71 166 36 83 73 166 37 83 38 83 77 166 39 83 79 166 40 83 41 83 1 2 42 83 43 83 87 166 44 83 89 166 45 83 46 83 93 166 47 83 95 166 48 83 49 83 99 166 50 83 101 166 51 83 52 83 105 166 53 83 107 166 54 83 56 83 113 166 57 83 115 166 58 83 117 166 59 83 119 166 60 83 121 166 61 83 123 166 62 83 125 166 63 83 127 166 64 83 129 166 65 83 131 166 66 83 133 166 67 83 135 166 68 83 137 166 141 166 71 83 143 166 72 83 145 166 147 166 74 83 149 166 75 83 151 166 153 166 77 83 155 166 78 83 157 166 159 166 80 83 161 166 81 83 163 166 165 166 1 1 166 3 166 2 83 5 166 3 83 7 166 9 166 5 83 11 166 6 83 13 166 15 166 8 83 17 166 9 83 19 166 21 166 11 83 23 166 12 83 25 166 29 166 15 83 31 166 16 83 33 166 17 83 35 166 18 83 37 166 19 83 39 166 20 83 41 166 21 83 43 166 22 83 45 166 23 83 47 166 24 83 49 166 25 83 51 166 26 83 53 166 27 83 29 83 59 166 30 83 61 166 31 83 32 83 65 166 33 83 67 166 34 83 35 83 71 166 36 83 73 166 37 83 38 83 77 166 39 83 79 166 40 83 41 83 1 2 42 83 43 83 87 166 44 83 89 166 45 83 46 83 93 166 47 83 95 166 48 83 49 83 99 166 50 83 101 166 51 83 52 83 105 166 53 83 107 166 54 83 56 83 113 166 57 83 115 166 58 83 117 166 59 83 119 166 60 83 121 166 61 83 123 166 62 83 125 166 63 83 127 166 64 83 129 166 65 83 131 166 66 83 133 166 67 83 135 166 68 83 137 166 141 166 71 83 143 166 72 83 145 166 147 166 74 83 149 166 75 83 151 166 153 166 77 83 155 166 78 83 157 166 159 166 80 83 161 166 81 83 163 166 165 166 1 1 166 3 166 2 83 5 166 3 83 7 166 9 166 5 83 11 166 6 83 13 166 15 166 8 83 17 166 9 83 19 166 21 166 11 83 23 166 12 83 25 166 29 166 15 83 31 166 16 83 33 166 17 83 35 166 18 83 37 166 19 83 39 166 20 83 41 166 21 83 43 166 22 83 45 166 23 83 47 166 24 83 49 166 25 83 51 166 26 83 53 166 27 83 29 83 59 166 30 83 61 166 31 83 32 83 65 166 33 83 67 166 34 83 35 83 71 166 36 83 73 166 37 83 38 83 77 166 39 83 79 166 40 83 41 83 1 2 42 83 43 83 87 166 44 83 89 166 45 83 46 83 93 166 47 83 95 166 48 83 49 83 99 166 50 83 101 166 51 83 52 83 105 166 53 83 107 166 54 83 56 83 113 166 57 83 115 166 58 83 117 166 59 83 119 166 60 83 121 166 61 83 123 166 62 83 125 166 63 83 127 166 64 83 129 166 65 83 131 166 66 83 133 166 67 83 135 166 68 83 137 166 141 166 71 83 143 166 72 83 145 166 147 166 74 83 149 166 75 83 151 166 153 166 77 83 155 166 78 83 157 166 159 166 80 83 161 166 81 83 163 166 165 166 1 Date: Revision: 1855 − Date: 2015-07-28 15:24:10 -0700 (Tue, 28 Jul 2015). The authors acknowledge partial support from the National Science Foundation through grant DMS-1320051 awarded to M. Köppe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An electronic compendium of extreme functions for the Gomory-Johnson infinite group problem

In this note we announce the availability of an electronic compendium of extreme functions for Gomory–Johnson’s infinite group problem. These functions serve as the strongest cut-generating functions for integer linear optimization problems. We also close several gaps in the literature.

متن کامل

Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem. Vi. the Curious Case of Two-sided Discontinuous Minimal Valid Functions

We construct a two-sided discontinuous piecewise linear minimal valid cut-generating function for the 1-row Gomory–Johnson model which is not extreme, but which is not a convex combination of other piecewise linear minimal valid functions. The new function only admits piecewise microperiodic perturbations. We present an algorithm for verifying certificates of non-extremality in the form of such...

متن کامل

On the Notions of Facets, Weak Facets, and Extreme Functions of the Gomory-Johnson Infinite Group Problem

We investigate three competing notions that generalize the notion of a facet of finite-dimensional polyhedra to the infinite-dimensional Gomory–Johnson model. These notions were known to coincide for continuous piecewise linear functions with rational breakpoints. We show that two of the notions, extreme functions and facets, coincide for the case of continuous piecewise linear functions, remov...

متن کامل

Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem. Vi. the Curious Case of Two-sided Discontinuous Functions

We construct a two-sided discontinuous piecewise linear minimal valid function for the 1-row Gomory–Johnson model which is not extreme, but which is not a convex combination of other piecewise linear minimal valid functions. This anomalous behavior results from combining features of Hildebrand’s two-sided discontinuous extreme functions and Basu–Hildebrand–Köppe’s piecewise linear extreme funct...

متن کامل

Light on the Infinite Group Relaxation

This is a survey on the infinite group problem, an infinite-dimensional relaxation of integer linear optimization problems introduced by Ralph Gomory and Ellis Johnson in their groundbreaking papers titled Some continuous functions related to corner polyhedra I, II [Math. Programming 3 (1972), 23–85, 359–389]. The survey presents the infinite group problem in the modern context of cut generatin...

متن کامل

Extreme Functions with an Arbitrary Number of Slopes

For the one dimensional infinite group relaxation, we construct a sequence of extreme valid functions that are piecewise linear and such that for every natural number k ≥ 2, there is a function in the sequence with k slopes. This settles an open question in this area regarding a universal bound on the number of slopes for extreme functions. The function which is the pointwise limit of this sequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program. Comput.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017